If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x=166
We move all terms to the left:
2x^2+2x-(166)=0
a = 2; b = 2; c = -166;
Δ = b2-4ac
Δ = 22-4·2·(-166)
Δ = 1332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1332}=\sqrt{36*37}=\sqrt{36}*\sqrt{37}=6\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6\sqrt{37}}{2*2}=\frac{-2-6\sqrt{37}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6\sqrt{37}}{2*2}=\frac{-2+6\sqrt{37}}{4} $
| 2x^2+2x=154 | | 2x^2+2x=164 | | -8(1+x)-44=12(x+4) | | X^2-x-210=O | | 1/5.x(3x-1/2)(-x+3)=0 | | x/8+6=10 | | (580-x)*4=1588 | | 2x+30=10x+6 | | (5y+6)(9-y)=0 | | X-0.06x=11000 | | X-0.06x=10000 | | 4(j+3)=20 | | 10x+8x=3+x | | 4(k4+3)=20 | | 3(j-2)=12 | | x^2-100x-15=0 | | -3+5x-3=12 | | X^4-6x^2+225=0 | | -2n=120 | | 5x+10=9x+30 | | 2x^-9x+9=0 | | 7m+12=5m+40 | | 13k-17=12 | | 42/y+1=67 | | 6(-6+x=76-2x | | x+0,125=0 | | 9x-2=4x-8 | | (x-3/2x+5)+(1/2)=0 | | -19-2(12-6x)=8+x+4 | | x=30x+1500 | | 2x-5=10x+15 | | 3r=4r^2-24r+35 |